
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 2117/16739
Clusters of GPUs are emerging as a new computational scenario. Programming them requires the use of hybrid models that increase the complexity of the applications, reducing the productivity of programmers. We present the implementation of OmpSs for clusters of GPUs, which supports asynchrony and heterogeneity for task parallelism. It is based on annotating a serial application with directives that are translated by the compiler. With it, the same program that runs sequentially in a node with a single GPU can run in parallel in multiple GPUs either local (single node) or remote (cluster of GPUs). Besides performing a task-based parallelization, the runtime system moves the data as needed between the different nodes and GPUs minimizing the impact of communication by using affinity scheduling, caching, and by overlapping communication with the computational task. We show several applicactions programmed with OmpSs and their performance with multiple GPUs in a local node and in remote nodes. The results show good tradeoff between performance and effort from the programmer.
Peer Reviewed
:Informàtica::Arquitectura de computadors::Arquitectures distribuïdes [Àrees temàtiques de la UPC], Computació distribuïda, Computational grids (Computer systems), Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures distribuïdes
:Informàtica::Arquitectura de computadors::Arquitectures distribuïdes [Àrees temàtiques de la UPC], Computació distribuïda, Computational grids (Computer systems), Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures distribuïdes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 125 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
views | 77 |