<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep learning and other machine learning approaches are deployed to many systems related to Internet of Things or IoT. However, it faces challenges that adversaries can take loopholes to hack these systems through tampering history data. This paper first presents overall points of adversarial machine learning. Then, we illustrate traditional methods, such as Petri Net cannot solve this new question efficiently. To help IoT data analysis more efficient, we propose a retrieval method based on deep learning (recurrent neural network). Besides, this paper presents a research on data retrieval solution to avoid hacking by adversaries in the fields of adversary machine leaning. It further directs the new approaches in terms of how to implementing this framework in IoT settings based on adversarial deep learning.
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |