Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Perspectives on the Use of Online Learning for Congestion Level Prediction over Traffic Data

Authors: Javier Del Ser; Jesus L. Lobo; Ibai Laña; Eric L. Manibardo;

New Perspectives on the Use of Online Learning for Congestion Level Prediction over Traffic Data

Abstract

This work focuses on classification over time series data. When a time series is generated by non-stationary phenomena, the pattern relating the series with the class to be predicted may evolve over time (concept drift). Consequently, predictive models aimed to learn this pattern may become eventually obsolete, hence failing to sustain performance levels of practical use. To overcome this model degradation, online learning methods incrementally learn from new data samples arriving over time, and accommodate eventual changes along the data stream by implementing assorted concept drift strategies. In this manuscript we elaborate on the suitability of online learning methods to predict the road congestion level based on traffic speed time series data. We draw interesting insights on the performance degradation when the forecasting horizon is increased. As opposed to what is done in most literature, we provide evidence of the importance of assessing the distribution of classes over time before designing and tuning the learning model. This previous exercise may give a hint of the predictability of the different congestion levels under target. Experimental results are discussed over real traffic speed data captured by inductive loops deployed over Seattle (USA). Several online learning methods are analyzed, from traditional incremental learning algorithms to more elaborated deep learning models. As shown by the reported results, when increasing the prediction horizon, the performance of all models degrade severely due to the distribution of classes along time, which supports our claim about the importance of analyzing this distribution prior to the design of the model.

Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green