
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Technical drawings are commonly used across different industries such as Oil and Gas, construction, mechanical and other types of engineering. In recent years, the digitization of these drawings is becoming increasingly important. In this paper, we present a semi-automatic and heuristic-based approach to detect and localise symbols within these drawings. This includes generating a labeled dataset from real world engineering drawings and investigating the classification performance of three different state-of the art supervised machine learning algorithms. In order to improve the classification accuracy the dataset was pre-processed using unsupervised learning algorithms to identify hidden patterns within classes. Testing and evaluating the proposed methods on a dataset of symbols representing one standard of drawings, namely Process and Instrumentation (P&ID) showed very competitive results.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
