
Effective and meaningful visualization techniques are quite important for multidimensional DNA microarray gene expression data analysis. Elucidating the cluster properties of these multidimensional data are often complex. Patterns, hypotheses on the relationships, and ultimately of the function of the gene can be analyzed and visualized by non-linear reduction of the multidimensional data to a lower dimension. In this paper, an improved SOM visualization technique named Improved Side Intensity Modulated (ISIM) Self-Organizing Map (SOM) has been proposed and compared with other SOM based visualization techniques. On different datasets, ISIM-SOM is found to offer better cluster boundary, simplicity and clarity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
