Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

μ Suite: A Benchmark Suite for Microservices

Authors: Thomas F. Wenisch; Akshitha Sriraman;

μ Suite: A Benchmark Suite for Microservices

Abstract

Modern On-Line Data Intensive (OLDI) applications have evolved from monolithic systems to instead comprise numerous, distributed microservices interacting via Remote Procedure Calls (RPCs). Microservices face single-digit millisecond RPC latency goals (implying sub-ms medians)—much tighter than their monolithic ancestors that must meet $\ge 100$ ms latency targets. Sub-ms-scale OS/network overheads that were once insignificant for such monoliths can now come to dominate in the sub-ms-scale microservice regime. It is therefore vital to characterize the influence of OS- and network-based effects on microservices. Unfortunately, widely-used academic data center benchmark suites are unsuitable to aid this characterization as they (1) use monolithic rather than microservice architectures, and (2) largely have request service times $\ge 100$ ms. In this paper, we investigate how OS and network overheads impact microservice median and tail latency by developing a complete suite of microservices called $ \mu$ Suite that we use to facilitate our study. $ \mu$ Suite comprises four OLDI services composed of microservices: image similarity search, protocol routing for key-value stores, set algebra on posting lists for document search, and recommender systems. Our characterization reveals that the relationship between optimal OS/network parameters and service load is complex. Our primary finding is that non-optimal OS scheduler decisions can degrade microservice tail latency by up to $\tilde 87$%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?