Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy

Authors: Benjamin Sanchez; Gerd Vandersteen; Javier Rosell-Ferrer; Juan Cinca; Ramon Bragós;

In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy

Abstract

Measurements of myocardium tissue impedance during the cardiac cycle have information about the morphology of myocardium cells as well as cell membranes and intra/extra cellular spaces. Although the variation with time of the impedance cardiac signal has information about the myocardium tissue activity during the cardiac cycle, this information has been usually underestimated in the studies based on frequency-sweep Electrical Impedance Spectroscopy (EIS) technique. In these cases, the dynamic behavior was removed from the impedance by means of averaging. The originality of this research is to show the time evolution of in-vivo healthy myocardium tissue impedance during the cardiac cycle, being measured with a multisine excitation at 26 frequencies (1 kHz-1 MHz). The obtained parameters from fitting data to a Cole model are valid indicators to explain the time relation of the systolic and diastolic function with respect to the myocardium impedance time variation. This paper presents a successful application of broadband Impedance Spectroscopy for time-varying impedance monitoring. Furthermore, it can be extended to understand various unsolved problems in a wide range of biomedical and electrochemical applications, where the system dynamics are intended to be studied.

Keywords

Dielectric Spectroscopy, Electric Impedance, Humans, Heart

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!