
arXiv: 1810.02643
Low resolution image enhancement is a classical computer vision problem. Selecting the best method to reconstruct an image to a higher resolution with the limited data available in the low-resolution image is quite a challenge. A major drawback from the existing enlargement techniques is the introduction of color bleeding while interpolating pixels over the edges that separate distinct colors in an image. The color bleeding causes to accentuate the edges with new colors as a result of blending multiple colors over adjacent regions. This paper proposes a novel approach to mitigate the color bleeding by segmenting the homogeneous color regions of the image using Simple Linear Iterative Clustering (SLIC) and applying a higher order interpolation technique separately on the isolated segments. The interpolation at the boundaries of each of the isolated segments is handled by using a morphological operation. The approach is evaluated by comparing against several frequently used image enlargement methods such as bilinear and bicubic interpolation by means of Peak Signal-to-Noise-Ratio (PSNR) value. The results obtained exhibit that the proposed method outperforms the baseline methods by means of PSNR and also mitigates the color bleeding at the edges which improves the overall appearance.
6 pages
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
