
The minimum spanning tree clustering algorithm is known to be capable of detecting clusters with irregular boundaries. In this paper, we propose two minimum spanning tree based clustering algorithms. The first algorithm produces a k-partition of a set of points for any given k. The algorithm constructs a minimum spanning tree of the point set and removes edges that satisfy a predefined criterion. The process is repeated until k clusters are produced. The second algorithm partitions a point set into a group of clusters by maximizing the overall standard deviation reduction, without a given k value. We present our experimental results comparing our proposed algorithms to k-means and EM. We also apply our algorithms to image color clustering and compare our algorithms to the standard minimum spanning tree clustering algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 89 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
