
In the following paper we present techniques for data-parallel execution of the Cellular Potts Model (CPM) on Graphics Processing Units (GPUs). We have developed data-structures and algorithms that are optimized to use available hardware resources on the GPU. To the best of our knowledge, this is the first attempt at using data-parallel techniques for simulating the CPM. We benchmarked this implementation against other parallel CPM implementations using traditional CPU clusters. Experimental results demonstrate that this implementation solves many of the drawbacks of traditional CPU clusters, and results in a performance gain of up to 30x, without sacrificing the integrity of the original model.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
