Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of robust control using stability theory of universal learning networks

Authors: null Yunqing Yu; K. Hirasawa; null Jinglu Hu; J. Murata;

Analysis of robust control using stability theory of universal learning networks

Abstract

Nth order asymptotic orbital stability analysis method has been proposed to determine whether a nonlinear system is stable or not with large fluctuations of the system states. In this paper, we discuss the stability of robust control of a nonlinear crane system using this method. The robust control system studied is more stable than ordinary control system even with the large disturbances. Nth order asymptotic orbital stability analysis is described by using the higher order derivatives of universal learning networks (ULNs), and ULNs are tools for modeling, managing and controlling large scale complicated systems such as economic, social and living systems as well as industrial plants. In this paper, robust control system is constructed by ULNs too, and the controller is best tuned through learning. Finally, simulations of 1st order orbital change of a nonlinear crane system are carried out. From results of simulations, it is shown that the robust control method have better performance and robustness than commonly used method.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!