
Higher order derivatives of the universal learning network (ULN) has been previously derived by forward and backward propagation computing methods, which can model and control the large scale complicated systems such as industrial plants, economic, social and life phenomena. In this paper, a new concept of nth order asymptotic orbital stability for the ULN is defined by using higher order derivatives of ULN and a sufficient condition of asymptotic orbital stability for ULN is derived. It is also shown that if 3rd order asymptotic orbital stability for a recurrent neural network is proved, higher order asymptotic orbital stability than 3rd order is guaranteed.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
