
handle: 2108/260195
A series of previous PSPACE- and NP-hardness results suggest that no general algorithm for robot motion planning can be polynomial in all of its input parameters, i.e., at least one parameter x must be exponential relative to a constant, e.g., 2/sup x/, or another parameter of the problem, e.g., y/sup x/. However, they have not answered the more relevant question posed by some FP space-based algorithms-namely, whether there is a general algorithm that is polynomial in all input parameters except k, in which k may yet be exponential relative to a constant or itself. In this paper, using the theory of parameterized computational complexity developed by Downey and Fellows (1992), the authors establish that the answer to this question is probably "no". The authors give an overview of this theory and derive their main result. Finally, they briefly discuss the implications for robotics of both these results and the parameterized complexity framework.
Algorithms. Computational complexity. Parameter estimation. Polynomials. Position control. Problem solving. Robotics. Robots. Theorem proving
Algorithms. Computational complexity. Parameter estimation. Polynomials. Position control. Problem solving. Robotics. Robots. Theorem proving
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
