
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>It is known that epipolar geometry can be computed from three epipolar line correspondences but this computation is rarely used in practice since there are no simple methods to find corresponding lines. Instead, methods for finding corresponding points are widely used. This paper proposes a similarity measure between lines that indicates whether two lines are corresponding epipolar lines and enables finding epipolar line correspondences as needed for the computation of epipolar geometry. A similarity measure between two lines, suitable for video sequences of a dynamic scene, has been previously described. This paper suggests a stereo matching similarity measure suitable for images. It is based on the quality of stereo matching between the two lines, as corresponding epipolar lines yield a good stereo correspondence. Instead of an exhaustive search over all possible pairs of lines, the search space is substantially reduced when two corresponding point pairs are given. We validate the proposed method using real-world images and compare it to state-of-the-art methods. We found this method to be more accurate by a factor of five compared to the standard method using seven corresponding points and comparable to the 8-points algorithm.
ICPR 2016, Cancun, Dec 2016
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
