Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Segment-Forest for Segmentation

Authors: Haoqi Fan; Han Li;

Segment-Forest for Segmentation

Abstract

In this paper, we present a novel generalized Segment-Forest Model (SFM) to segment an object as well as label all the object's semantic parts simultaneously. Segment-Forest is composed by various generated segment trees that act directly on super pixels. Unlike recent works, SFM does not need the prior information like skeleton to capture the core structure of an object, but actively learns the structure from semantic parts during the learning stage. The prediction is an Inference-On-Tree-Voting-On-Forest process, which precludes the expensive computation of the multi-objective optimization. Both training and inference in SFM are extremely efficient, especially compared with traditional multi-objective optimization approaches using in segmentation. We demonstrate superior performance particularly in object articulation, non-rigid deformation on two standard datasets over current state-of-the-art methods. Through further occlusion experiments, we show that SFM can work robustly in the real world.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!