<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1109/icpr.2010.52
Dissimilarities can be a powerful way to represent objects like strings, graphs and images for which it is difficult to find good features. The resulting dissimilarity space may be used to train any classifier appropriate for feature spaces. There is, however, a strong need for dimension reduction. Straightforward procedures for prototype selection as well as feature selection have been used for this in the past. Complicated sets of objects may need more advanced procedures to overcome local minima. In this paper it is shown that genetic algorithms, previously used for feature selection, may be used for building good dissimilarity spaces as well, especially when small sets of prototypes are needed for computational reasons.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |