Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icpc52...
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving Code Summarization with Block-wise Abstract Syntax Tree Splitting

Authors: Chen Lin; Zhichao Ouyang; Jianqiang Chen; Rongxin Wu; Hui Li; Junqing Zhuang;

Improving Code Summarization with Block-wise Abstract Syntax Tree Splitting

Abstract

Automatic code summarization frees software developers from the heavy burden of manual commenting and benefits software development and maintenance. Abstract Syntax Tree (AST), which depicts the source code's syntactic structure, has been incorporated to guide the generation of code summaries. However, existing AST based methods suffer from the difficulty of training and generate inadequate code summaries. In this paper, we present the Block-wise Abstract Syntax Tree Splitting method (BASTS for short), which fully utilizes the rich tree-form syntax structure in ASTs, for improving code summarization. BASTS splits the code of a method based on the blocks in the dominator tree of the Control Flow Graph, and generates a split AST for each code split. Each split AST is then modeled by a Tree-LSTM using a pre-training strategy to capture local non-linear syntax encoding. The learned syntax encoding is combined with code encoding, and fed into Transformer to generate high-quality code summaries. Comprehensive experiments on benchmarks have demonstrated that BASTS significantly outperforms state-of-the-art approaches in terms of various evaluation metrics. To facilitate reproducibility, our implementation is available at https://github.com/XMUDM/BASTS.

Accepted in 29th IEEE/ACM International Conference on Program Comprehension (ICPC 2021)

Related Organizations
Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computation and Language (cs.CL)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 1%
Green