
Two neural networks which are trained on their mutual output bits show a novel phenomenon: The networks synchronize to a state with identical time dependent weights. It is shown how synchronization by mutual learning can be applied to cryptography: secret key exchange over a public channel.
9th International Conference on Neural Information Processing, Singapore, Nov. 2002
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
