
This paper presents a novel method for image segmentation. We improved the effect of saliency detection for the purpose of image segmentation. Graph cuts are used to find global optimal segmentation of N-dimensional image. With the guidance of saliency, users do not have to select foreground object and background seeds. The main advantages of our method are that: Firstly we revised the existed sparse saliency model to better suit for image segmentation, Secondly we propose a new color modeling method during the process of GrabCut segmentation. Finally we combine these two processes together to segment images without interference. We demonstrate our proposed scheme for image segmentation on several databases and get satisfactory results.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
