
The two-dimensional discrete wavelet transform has a huge number of applications in image-processing techniques. Until now, several papers compared the performance of such transform on graphics processing units (GPUs). However, all of them only dealt with lifting and convolution computation schemes. In this paper, we show that corresponding horizontal and vertical lifting parts of the lifting scheme can be merged into non-separable lifting units, which halves the number of steps. We also discuss an optimization strategy leading to a reduction in the number of arithmetic operations. The schemes were assessed using the OpenCL and pixel shaders. The proposed non-separable lifting scheme outperforms the existing schemes in many cases, irrespective of its higher complexity.
preprint submitted to ICIP 2017. arXiv admin note: substantial text overlap with arXiv:1704.08657
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computer Science - Multimedia, Multimedia (cs.MM)
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computer Science - Multimedia, Multimedia (cs.MM)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
