
Intelligent video editing techniques can be used to tamper videos such as surveillance camera videos, defeating their potential to be used as evidence in a court of law. In this paper, we propose a technique to detect forgery in MPEG videos by analyzing the frame's compression noise characteristics. The compression noise is extracted from spatial domain by using a modified Huber Markov Random Field (HMRF) as a prior for image. The transition probability matrices of the extracted noise are used as features to classify a given video as single compressed or double compressed. The experiment is conducted on different YUV sequences with different scale factors. The efficiency of our classification is observed to be higher relative to the state of the art detection algorithms.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
