
Traditional Markov network structure learning algorithms perform a search for globally useful features. However, these algorithms are often slow and prone to finding local optima due to the large space of possible structures. Ravikumar et al. recently proposed the alternative idea of applying L1 logistic regression to learn a set of pair wise features for each variable, which are then combined into a global model. This paper presents the DTSL algorithm, which uses probabilistic decision trees as the local model. Our approach has two significant advantages: it is more efficient, and it is able to discover features that capture more complex interactions among the variables. Our approach can also be seen as a method for converting a dependency network into a consistent probabilistic model. In an extensive empirical evaluation on 13 datasets, our algorithm obtains comparable accuracy to three standard structure learning algorithms while running 1-4 orders of magnitude faster.
structure learning, probabilistic models, Markov networks
structure learning, probabilistic models, Markov networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
