Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convex Non-negative Matrix Factorization in the Wild

Authors: Christian Bauckhage; Christian Thurau; Kristian Kersting;

Convex Non-negative Matrix Factorization in the Wild

Abstract

Non-negative matrix factorization (NMF) has recently received a lot of attention in data mining, information retrieval, and computer vision. It factorizes a non-negative input matrix V into two non-negative matrix factors V = WH such that W describes "clusters" of the datasets. Analyzing genotypes, social networks, or images, it can be beneficial to ensure V to contain meaningful ``cluster centroids'', i.e., to restrict W to be convex combinations of data points. But how can we run this convex NMF in the wild, i.e., given millions of data points? Triggered by the simple observation that each data point is a convex combination of vertices of the data convex hull, we propose to restrict W further to be vertices of the convex hull. The benefits of this convex-hull NMF approach are twofold. First, the expected size of the convex hull of the candidate set typically grows much slower than the data set. Second, distance preserving low-dimensional embeddings allow one to compute candidate vertices efficiently. Our extensive experimental evaluation shows that convex-hull NMF compares favorably to convex NMF for large data sets both in terms of speed and reconstruction quality. Moreover, we show that our method can easily be applied to large-scale, real-world data sets, in our case consisting of 1.6 million images respectively 160 million votes on World of Warcraft guilds.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!