Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Autonomic workload execution control using throttling

Authors: Wendy Powley; Patrick Martin 0001; Mingyi Zhang 0001; Paul Bird; Keith McDonald;

Autonomic workload execution control using throttling

Abstract

Database Management Systems (DBMSs) are often required to simultaneously process multiple diverse workloads while enforcing business policies that govern workload performance. Workload control mechanisms such as admission control, query scheduling, and workload execution control serve to ensure that such policies are enforced and that individual workload goals are met. Query throttling can be used as a workload execution control method whereby problematic queries are slowed down, thus freeing resources to allow the more important work to complete more rapidly. In a self-managed system, a controller would be used to determine the appropriate level of throttling necessary to allow the important workload to meet is goals. The throttling would be increased or decreased depending upon the current system performance. In this paper, we explore two techniques to maintain an appropriate level of query throttling. The first technique uses a simple controller based on a diminishing step function to determine the amount of throttling. The second technique adopts a control theory approach that uses a black-box modelling technique to model the system and to determine the appropriate throttle value given current performance. We present a set of experiments that illustrate the effectiveness of each controller, then propose and evaluate a hybrid controller that combines the two techniques.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!