
Aggregate measures summarizing subsets of data are valuable in exploratory analysis and decision support, especially when dependent aggregations can be easily specified and computed. A novel class of queries, called composite subset measures, was previously introduced to allow correlated aggregate queries to be easily expressed. This paper considers how to evaluate composite subset measure queries using a large distributed system. We describe a cross-node data redistribution strategy that takes into account the nested structure of a given query. The main idea is to group data into blocks in "cube space", such that aggregations can be generated locally within each block, leveraging previously proposed optimizations per-block. The partitioning scheme allows overlap among blocks so that sliding window aggregation can be handled. Furthermore, it also guarantees that the final answer is the union of local results with no duplication and there is no need for the expensive data combination step. We identify the most important partitioning parameters and propose an optimization algorithm. We also demonstrate effectiveness of the optimizer to minimize the query response time.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
