Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Finding Optimal Join Tree forMulti-Join Stream Queries in a Production System

Authors: Heyong-Ah Choi; J.S. Gomes;

Finding Optimal Join Tree forMulti-Join Stream Queries in a Production System

Abstract

Data Stream Management Systems (DSMS) handle a particular type of database applications that involve multiple continuous data streams with inputs arriving at highly variable and unpredictable rates. Since data rate fluctuates over time in this type of applications the appropriate join tree is crucial for maintaining high system throughput. We consider the problem of finding optimal join tree for performing count based sliding window multi-joins over continuous streams. We use a unit-time based cost model to evaluate the expected performance for a given join tree. We materialize all intermediate results assuming there is enough main memory to store all partial results and window buffers. We give a polynomial time algorithm that finds the optimal join tree under our cost model for a given noncommuting (single permutation) order of streams. This algorithm can be used in conjunction with any linear order producing heuristic to give the optimal tree for that order. Our algorithm is implemented in the Jess rule engine and an extensive experimental evaluation is provided.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!