
We investigate the performance and robustness to noise of a centralized control called Power-Imbalance Allocation Control (PIAC) for secondary frequency control of a power system. The noise affects the frequency measurements and the communications. The impact of the noise on the synchronous state of the system is investigated. Analysis shows that the synchronized frequency deviation is proportional to the bias of the noise in the frequency measurements and gathering procedure of these measurements. With the noise considered as an input, the Input-to-State Stability (ISS) is proven for the closed-loop system.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
