Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Geometric Random Linear Codes in Sensor Networks

Authors: Yunfeng Lin; Baochun Li; Ben Liang;

Geometric Random Linear Codes in Sensor Networks

Abstract

Wireless sensor networks consist of unreliable and energy-constrained sensors connecting to each other wirelessly. As measured data may be lost due to sensor failures, maintaining the persistence of periodically measured data in a scalable fashion has become a critical challenge in sensor networks, without the use of centralized servers. To cope with node failures, while providing convenient access to measured data, we propose geometric random linear codes, to encode data in a hierarchical fashion in geographic regions with different sizes, such that data are easy to access, if the original sensors producing the data are alive. Otherwise, data are persistently available elsewhere in the network. Although our coding scheme is simple, we have shown that it enjoys the same low encoding cost as sparse random linear codes, while dramatically decreasing the decoding cost. We present extensive analytical and experimental results to show the effectiveness of geometric random linear codes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?