<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Some recent models for Text-to-Speech synthesis aim to transfer the prosody of a reference utterance to the generated target synthetic speech. This is done by using a learned embedding of the reference utterance, which is used to condition speech generation. During training, the reference utterance is identical to the target utterance. Yet, during synthesis, these models are often used to transfer prosody from a reference that differs from the text or speaker being synthesized. To address this inconsistency, we propose to use a different, but prosodically-related, utterance during training too. We believe this should encourage the model to learn to transfer only those characteristics that the reference and target have in common. If prosody transfer methods do indeed transfer prosody they should be able to be trained in the way we propose. However, results show that a model trained under these conditions performs significantly worse than one trained using the target utterance as a reference. To explain this, we hypothesize that prosody transfer models do not learn a transferable representation of prosody, but rather an utterance-level representation which is highly dependent on both the reference speaker and reference text.
Accepted in ICASSP 2023, 5 pages, 2 figures, 3 tables
FOS: Computer and information sciences, Sound (cs.SD), Computer Science - Computation and Language, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language (cs.CL), Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing
FOS: Computer and information sciences, Sound (cs.SD), Computer Science - Computation and Language, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language (cs.CL), Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |