
The performance of automatic speech recognition systems(ASR) degrades in the presence of noisy speech. This paper demonstrates that using electroencephalography (EEG) can help automatic speech recognition systems overcome performance loss in the presence of noise. The paper also shows that distillation training of automatic speech recognition systems using EEG features will increase their performance. Finally, we demonstrate the ability to recognize words from EEG with no speech signal on a limited English vocabulary with high accuracy.
Accepted for ICASSP 2019
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
