Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed compressive video sensing

Authors: Li-Wei Kang; Chun-Shien Lu;

Distributed compressive video sensing

Abstract

Low-complexity video encoding has been applicable to several emerging applications. Recently, distributed video coding (DVC) has been proposed to reduce encoding complexity to the order of that for still image encoding. In addition, compressive sensing (CS) has been applicable to directly capture compressed image data efficiently. In this paper, by integrating the respective characteristics of DVC and CS, a distributed compressive video sensing (DCVS) framework is proposed to simultaneously capture and compress video data, where almost all computation burdens can be shifted to the decoder, resulting in a very low-complexity encoder. At the decoder, compressed video can be efficiently reconstructed using the modified GPSR (gradient projection for sparse reconstruction) algorithm. With the assistance of the proposed initialization and stopping criteria for GRSR, derived from statistical dependencies among successive video frames, our modified GPSR algorithm can terminate faster and reconstruct better video quality. The performance of our DCVS method is demonstrated via simulations to outperform three known CS reconstruction algorithms.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    187
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
187
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?