
A new method for removing impulse noise from speech in the wavelet transform domain is proposed. The method utilizes the multiresolution property of the wavelet transform, which provides finer time resolution at the higher frequencies than the short-time Fourier transform (STFT), to effectively identify and remove impulse noise. It uses two features of speech to discriminate speech from impulse noise: one is the slow time-varying nature of speech and the other is the Lipschitz regularity of the speech components. On the basis of these features, an algorithm has been developed to identify and suppress wavelet coefficients that correspond to impulse noise. Experiment results show that the new method is able to significantly reduce impulse noise without degrading the quality of the speech signal or introducing any audible artifacts.
Icassp 2008
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
