
DNA microarray technology relies on the hybridization process which is stochastic in nature. Probabilistic cross-hybridization of non-specific targets, as well as the shot-noise originating from specific targets binding, are among the many obstacles for achieving high accuracy in DNA microarray analysis. In this paper, we use statistical model of hybridization and cross-hybridization processes to derive a lower bound (viz., the Cramer-Rao bound) on the minimum mean-square error of the target concentrations estimation. A preliminary study of the Cramer-Rao bound for estimating the target concentrations suggests that, in some regimes, cross-hybridization may, in fact, be beneficial - a result with potential ramifications for probe design, which is currently focused on minimizing cross-hybridization
510, 620
510, 620
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
