
arXiv: 1507.02357
Data processing systems impose multiple views on data as it is processed by the system. These views include spreadsheets, databases, matrices, and graphs. There are a wide variety of technologies that can be used to store and process data through these different steps. The Lustre parallel file system, the Hadoop distributed file system, and the Accumulo database are all designed to address the largest and the most challenging data storage problems. There have been many ad-hoc comparisons of these technologies. This paper describes the foundational principles of each technology, provides simple models for assessing their capabilities, and compares the various technologies on a hypothetical common cluster. These comparisons indicate that Lustre provides 2x more storage capacity, is less likely to loose data during 3 simultaneous drive failures, and provides higher bandwidth on general purpose workloads. Hadoop can provide 4x greater read bandwidth on special purpose workloads. Accumulo provides 10,000x lower latency on random lookups than either Lustre or Hadoop but Accumulo's bulk bandwidth is 10x less. Significant recent work has been done to enable mix-and-match solutions that allow Lustre, Hadoop, and Accumulo to be combined in different ways.
6 pages; accepted to IEEE High Performance Extreme Computing conference, Waltham, MA, 2015
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Databases, Databases (cs.DB), Distributed, Parallel, and Cluster Computing (cs.DC)
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Databases, Databases (cs.DB), Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
