<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1109/his.2008.143
Multi-dimensional classification is a generalization of supervised classification that considers more than one class variable to classify. In this paper we review the existing multi-dimensional Bayesian classifiers and introduce a new one: the KDB multi-dimensional classifier. Then we define different classification rules for multi-dimensional scope. Finally, we introduce a structural learning approach of a multi-dimensional Bayesian classifier based on the multi-objective evolutionary algorithm NSGA-II. The solution of the learning approach is a Pareto front representing different multi-dimensional classifiers and their accuracy values for the different classes, so a decision maker can easily choose the classifier which is more interesting for the particular problem and domain.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |