
doi: 10.1109/his.2008.143
Multi-dimensional classification is a generalization of supervised classification that considers more than one class variable to classify. In this paper we review the existing multi-dimensional Bayesian classifiers and introduce a new one: the KDB multi-dimensional classifier. Then we define different classification rules for multi-dimensional scope. Finally, we introduce a structural learning approach of a multi-dimensional Bayesian classifier based on the multi-objective evolutionary algorithm NSGA-II. The solution of the learning approach is a Pareto front representing different multi-dimensional classifiers and their accuracy values for the different classes, so a decision maker can easily choose the classifier which is more interesting for the particular problem and domain.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
