
We study two approaches to distributed compressed sensing for in-network data compression and signal reconstruction at a sink in a wireless sensor network where sensors are placed on a straight line. Communication to the sink is considered to be bandwidth-constrained due to the large number of devices. By using distributed compressed sensing for compression of the data in the network, the communication cost (bandwith usage) to the sink can be decreased at the expense of delay induced by the local communication necessary for compression. We investigate the relation between cost and delay given a certain reconstruction performance requirement when using basis pursuit denoising for reconstruction. Moreover, we analyze and compare the performance degradation due to erased packets sent to the sink of the two approaches.
Paper accepted to GLOBECOM 2014
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), Communication Systems
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), Communication Systems
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
