Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/fpt.20...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application Acceleration on FPGAs with OmpSs@FPGA

Authors: Bosch, Jaume; Tan, Xubin; Filgueras Izquierdo, Antonio; Vidal, Miquel; Mateu, Marc; Jiménez-González, Daniel; Álvarez, Carlos; +3 Authors

Application Acceleration on FPGAs with OmpSs@FPGA

Abstract

OmpSs@FPGA is the flavor of OmpSs that allows offloading application functionality to FPGAs. Similarly to OpenMP, it is based on compiler directives. While the OpenMP specification also includes support for heterogeneous execution, we use OmpSs and OmpSs@FPGA as prototype implementation to develop new ideas for OpenMP. OmpSs@FPGA implements the tasking model with runtime support to automatically exploit all SMP and FPGA resources available in the execution platform. In this paper, we present the OmpSs@FPGA ecosystem, based on the Mercurium compiler and the Nanos++ runtime system. We show how the applications are transformed to run on the SMP cores and the FPGA. The application kernels defined as tasks to be accelerated, using the OmpSs directives are: 1) transformed by the compiler into kernels connected with the proper synchronization and communication ports, 2) extracted to intermediate files, 3) compiled through the FPGA vendor HLS tool, and 4) used to configure the FPGA. Our Nanos++ runtime system schedules the application tasks on the platform, being able to use the SMP cores and the FPGA accelerators at the same time. We present the evaluation of the OmpSs@FPGA environment with the Matrix Multiplication, Cholesky and N-Body benchmarks, showing the internal details of the execution, and the performance obtained on a Zynq Ultrascale+ MPSoC (up to 128x). The source code uses OmpSs@FPGA annotations and different Vivado HLS optimization directives are applied for acceleration.

This work is partially supported by the European Union H2020 program through the EuroEXA project (grant 754337), and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015- 0493), by the Spanish Ministry of Science and Technology (TIN2015-65316-P) and the Departament d’Innovació Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Paral·lels (2014-SGR-1051).

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Peer Reviewed

Keywords

Tools, Kernel, Matrius de portes programables per l'usuari, Runtime, Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures paral·leles, Task analysis, Field programmable gate arrays, :Informàtica::Arquitectura de computadors::Arquitectures paral·leles [Àrees temàtiques de la UPC], Switched mode power supplies, IP networks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 55
    download downloads 103
  • 55
    views
    103
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
21
Top 10%
Top 10%
Top 10%
55
103
Green