
Human robot interaction presents a unique set of challenges for biometric person identification. During normal interactions between the robot and a user, a tremendous amount of information is available for identification. Our objective is to use this information to identify users quickly and accurately during interactions with a robot. We present our approach for multimodal person identification using Markov logic networks (MLN). We use appearance, clothing, speaker recognition, and face recognition to identify a person during an interaction where they are speaking to the robot. We demonstrate the effectiveness of our approach using sequences of individuals speaking freely on a topic of their choosing.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
