
A technique is proposed for increasing the computational efficiency of a mixed-mode FDTD ciruit simulator. The FDTD algorithm is coupled to a set of equations which describes both linear and non linear lumped elements. The simulation time step is adaptively adjusted by monitorng the convergence of the Newton-Raphson procedure adopted for the non-linear solution. This considerably speeds up the simulation, with respect to the adoption of a worst-case, fixed time step. The propagation of a high speed digital signal along a transmission lines is presented as an example. Simulation results are compared with SPICE outputs, showing excellent agreement.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
