Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MapReduce algorithms for efficient generation of CPS models from large historical data sets

Authors: Stefan Windmann; Oliver Niggemann;

MapReduce algorithms for efficient generation of CPS models from large historical data sets

Abstract

This paper addresses the efficient generation of models for cyber-physical systems from large historical data sets. A cyber-physical system (CPS) is a system composed of physical subsystems together with computing and networking. CPS models are required for monitoring and control of the physical processes. Such models are in general hybrid models that take into account both discrete control signals and continuous system behaviour. Model-learning is the key to a new generation of intelligent automation systems: Automatic generation of models from system observations allows to model complex CPS in cases where manual model creation is time-consuming, expensive or not even possible. In general, the quality of the generated models increases with the size of training data. However, model learning from large historical data sets is in many cases time-consuming. For this reason, MapReduce algorithms are proposed in the present work that allow for efficient model learning.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!