Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2000
Data sources: IRIS Cnr
https://doi.org/10.1109/empdp....
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CELLAR: a high level cellular programming language with regions

Authors: Gianluigi Folino; Giandomenico Spezzano;

CELLAR: a high level cellular programming language with regions

Abstract

This paper describes CELLAR, a language for cellular programming which extends the cellular automata model through the concept of regions. Regions are spatiotemporal objects that define zones of the automaton (set of cells), containing interesting and meaningful data patterns or trends that can be defined as events. Each cell of the automaton can monitor regions for a given period and observe their evolution by global functions (max, min, sum etc.). Furthermore, each cell can have an associated attribute called its perception rating, that indicates how far that cell can 'see'. On the basis of this value and the cell's position in the cellular space, we can define the regions that are visible to the cell. Using these constructs, a cell can define significant events to extract data of interest in one or more regions and perform actions when an event is detected. In the paper, we show that regions simplify programming and allow the building of more complex models. After describing the main constructs of CELLAR, the paper illustrates the region-based programming model by describing the design of a parallel model of animal migration. Performance results of the model implemented on a Meiko CS-2 are also given.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!