
pmid: 36086507
The period directly following surgery is critical for patients as they are at risk of infections and other types of complications, often summarized as severe adverse events (SAE). We hypothesize that impending complications might alter the circadian rhythm and, therefore, be detectable during the night before. We propose a SMOTE-enhanced XGBoost prediction model that classifies nighttime vital signs depending on whether they precede a serious adverse event or come from a patient that does not have a complication at all, based on data from 450 postoperative patients. The approach showed respectable results, producing a ROC-AUC score of 0.65 and an accuracy of 0.75. These findings demonstrate the need for further investigation.
Vital Signs, Humans
Vital Signs, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
