
pmid: 31946367
Sound coding involves several stages of processing along the auditory path. Specifically, the Inner Hair Cells (IHC) act as sensory receptors and transduce acoustic information -frequency, intensity and duration of the stimulus- into neuronal signals. In this work, a stochastic model was implemented to achieve a better understanding of the IHC-auditory nerve synapse, specifically, the process of Ready Releasable Pool (RRP) vesicle exocytosis, a complicated process to study experimentally because current protocols do not provide adequate temporal resolution, in the order of milliseconds. The presented model allows predicting the efficiency of glutamate release towards explaining maturation changes or disease impacts in the auditory pathway.
Auditory Pathways, Hair Cells, Auditory, Inner, Synapses, Cochlear Nerve, Exocytosis
Auditory Pathways, Hair Cells, Auditory, Inner, Synapses, Cochlear Nerve, Exocytosis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
