Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detection of myasthenia gravis using electrooculography signals

Authors: T, Liang; M I, Boulos; B J, Murray; S, Krishnan; H, Katzberg; K, Umapathy;

Detection of myasthenia gravis using electrooculography signals

Abstract

Myasthenia gravis (MG) is an autoimmune neuromuscular disorder resulting from skeletal muscle weakness and fatigue. An early common symptom is fatigable weakness of the extrinsic ocular muscles; if symptoms remain confined to the ocular muscles after a few years, this is classified as ocular myasthenia gravis (OMG). Diagnosis of MG when there are mild, isolated ocular symptoms can be difficult, and currently available diagnostic techniques are insensitive, non-specific or technically cumbersome. In addition, there are no accurate biomarkers to follow severity of ocular dysfunction in MG over time. Single-fiber electromyography (SFEMG) and repetitive nerve stimulation (RNS) offers a way of detecting and measuring ocular muscle dysfunction in MG, however, challenges of these methods include a poor signal to noise ratio in quantifying eye muscle weakness especially in mild cases. This paper presents one of the attempts to use the electric potentials from the eyes or electrooculography (EOG) signals but obtained from three different forms of sleep testing to differentiate MG patients from age- and gender-matched controls. We analyzed 8 MG patients and 8 control patients and demonstrated a difference in the average eye movements detected between the groups. A classification accuracy as high as 68.8% was achieved using a linear discriminant analysis based classifier.

Keywords

Male, Electrooculography, Electromyography, Oculomotor Muscles, Case-Control Studies, Polysomnography, Myasthenia Gravis, Humans, Female, Wakefulness, Eye, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!