
The beneficial effects of transcranial direct current stimulation (tDCS) has been demonstrated, but the neuroscientific community is working to increase its efficiency. A promising line of advancement may be reducing the inter-individual variability of the response through the personalization of the stimulation, adapted to fit the structural and functional features of individual subjects. In this paper, we approach the personalization of stimulation parameters using modeling, a powerful tool to test montages enabling the optimization of brain's targeting.
Epilepsy, neuromodulation, Finite Element Analysis, Models, Neurological, Brain, Humans, Electroencephalography, Precision Medicine, Transcranial Direct Current Stimulation, personalization, tDCS
Epilepsy, neuromodulation, Finite Element Analysis, Models, Neurological, Brain, Humans, Electroencephalography, Precision Medicine, Transcranial Direct Current Stimulation, personalization, tDCS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
