Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel use of Empirical Mode Decomposition in single-trial classification of motor imagery for use in brain-computer interfaces

Authors: Simon R. H. Davies; Christopher J. James;

Novel use of Empirical Mode Decomposition in single-trial classification of motor imagery for use in brain-computer interfaces

Abstract

This paper presents a novel method, based on multi-channel Empirical Mode Decomposition (EMD), of classifying the electroencephalogram (EEG) recordings of imagined movement by a subject within a brain-computer interfacing (BCI) framework. EMD is a technique that divides any non-linear or non-stationary signal into groups of frequency harmonics, called Intrinsic Mode Functions (IMFs). As frequency is a key component of both IMFs and the μ rhythm (8-13 Hz brain activity generated during motor imagery), IMFs are then grouped by frequency. EMD is applied to the recordings from two electrodes for each trial and the resulting IMFs are grouped according to peak-frequency band via Hierarchical Clustering Analysis (HCA). The cluster containing the frequency band of the μ rhythm (8-13 Hz) is then selected and the sum-total of the IMFs from each electrode are summed together. A simple linear classifier is then sufficient to classify the motor-imagery with 89% sensitivity from a separate test set.

Related Organizations
Keywords

Adult, Movement, Brain, Electroencephalography, Signal Processing, Computer-Assisted, Brain-Computer Interfaces, Imagination, Humans, Female, Electrodes, Psychomotor Performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!