Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cardiac optogenetics

Authors: Oscar J, Abilez;

Cardiac optogenetics

Abstract

For therapies based on human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) to be effective, arrhythmias must be avoided. Towards achieving this goal, light-activated channelrhodopsin-2 (ChR2), a cation channel activated with 480 nm light, and a first generation halorhodopsin (NpHR1.0), an anion pump activated by 580 nm light, have been introduced into hiPSC. By using in vitro approaches, hiPSC-CM are able to be optogenetically activated and inhibited. ChR2 and NpHR1.0 are stably transduced into undifferentiated hiPSC via a lentiviral vector. Via directed differentiation, both wildtype hiPSC-CM (hiPSC(WT)-CM) and hiPSC(ChR2/NpHR)-CM are produced and subjected to both electrical and optical stimulation. Both hiPSC(WT)-CM and hiPSC(ChR2/NpHR)-CM respond to traditional electrical stimulation and produce similar contractility features but only hiPSC(ChR2/NpHR)-CM can be synchronized and inhibited by optical stimulation. Here it is shown that light sensitive proteins can enable in vitro optical control of hiPSC-CM. For future therapy, in vivo optical stimulation could allow precise and specific synchronization of implanted hiPSC-CM with patient cardiac rates and rhythms.

Related Organizations
Keywords

Induced Pluripotent Stem Cells, Cell Differentiation, Transfection, Immunohistochemistry, Electric Stimulation, Cell Line, Optogenetics, Luminescent Proteins, Channelrhodopsins, Humans, Myocytes, Cardiac, Halorhodopsins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!