Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ultra-thin, flexible electronics

Authors: Holland, Brian; Mcpherson, Ryan; Zhang, Tan; Hou, Zhenwei; Dean, Robert; Johnson, R. Wayne; Del Castillo, Linda; +1 Authors

Ultra-thin, flexible electronics

Abstract

Thinned die can be used to realize ultra-thin flexible electronics for applications such as conformal and wearable electronics. Three techniques have been developed to achieve this goal using thinned die: die flip chip bonded onto flexible substrates, die laminated onto LCP films, and die embedded in polyimide. A key to achieving each of these techniques is the thinning of die to a thickness of 50 mum or thinner. Conventional CMP processing can be used to thin to 50 mum. At 50 mum, the active die become flexible and must be handled by temporarily bonding them to a holder die, for further processing. Once bonded face down to the holder die, the active die can be further thinned by DRIE etching the exposed backside. The thinned die can then been packaged in or on the flexible substrate.

Country
United States
Keywords

bonding processes, electronics packaging, flip chip devices, flexible electronics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?