Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/digita...
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

News search using discourse analytics

Authors: Thompson, Paul; Nawaz, Raheel; Korkontzelos, Ioannis; Black, William; McNaught, John; Ananiadou, Sophia;

News search using discourse analytics

Abstract

The vast numbers of digitised documents containing historical data constitute a rich research data repository. However, computational methods and tools available to explore this data are still limited in functionality. Research on historical archives is still largely carried out manually. Text mining technologies offer novel methods to analyse digital content to identify various types of semantic information in these documents and to extract them as semantic metadata. Methods range from the automatic identification of named entities (e.g., people, places, organisations, etc.) to more sophisticated methods to extract information about events (e.g., births, deaths, arrests, etc.), allowing users to greatly increase the specificity of their search. We have created an extended model of event interpretation to allow searches to be refined based on various discourse facets, including isolating definite information about events from more speculative details, distinguishing positive and negative opinions and categorising events according to information source. We present ISHER as an example of a multi-faceted, semantically oriented system for searching news articles from the New York Times, dating back to 1987. We explain how our extended event interpretation model can enhance search capabilities in systems such as ISHER, including the identification of contrasting and contradictory information in news articles. © 2013 IEEE.

Related Organizations
Keywords

social history, event interpretation, text mining, semantic metadata, discourse analysis, events, event-based search

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!