
Design verification of a systems-on-a-chip is a bottleneck for hardware design projects. A new solution is a design verification methodology that applies coverage driven verification at the embedded software application level. This methodology currently lacks an appropriate coverage measurement technique. This paper proposes a new coverage model for the software application level. Using this coverage model, a novel technique to represent and measure coverage is described. This technique uses ideas such as control graph structures and checking algorithms to estimate the completeness of software application verification.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
